History



Planar micro-electrode arrays were created independently in the late 1970's by Jerry Pine, Guenter Gross, and Charles Thomas to bridge the gap between the high resolution recordings of single neurons using "classic" single glass pipette electrodes and the desire to simultaneously record from hundreds of neurons to investigate the computational properties of small neural networks.

References:
profjerry Jerry Pines's Website
Pine, J. (1980). Recording action potentials from cultured neurons with extracellular microcircuit electrodes. Journal of Neuroscience Methods, 2(1), 19-31.

grossGuenter Gross's Website
Gross, G. W., Rieske, E., Kreutzberg, G.W., and Meyer, A. (1977). A new fixed-array multielectrode system designed for long-term monitoring of extracellular single unit neuronal activity in vitro. Neuroscience Letters, 6, 101-105.

Thomas, C. A., Springer, P. A., Loeb, G. E., Berwald-Netter, Y., Okun, L. M. (1972). A miniature microelectrode array to monitor the bioelectric activity of cultured cells.
Exp. Cell Res., 74, 61-66.

Technology used my laboratory:



logomcs


My laboratory uses the MultiChannel Systems MEA1060 (dissociated cultures) and MEA1060BC (for acute slice) system for recording neural activity. This system permits us to measure activity on 64 channels (60 electrodes + 4 Auxillary) at very high sampling rates (25KHz) detecting both single unit activity or field potentials (e.g., in acute slice preparations) in real-time. Multichannel systems website contains complete information about the system along with a wide range of accessories (e.g., stimulation, profusion, different MEAs available, etc.).


planar-1_smallplanar-2_small
An example of a Micro-electrode array (MEA) from Multichannel Systems. This array consists of 60 electrodes arranged in an 8x8 grid with each electrode spaced 100, 200, or 500 um apart dependent on the type of MEA purchased. Each electrode measures the extracellular potential of neurons as they fire action potentials. Application of a voltage or current to an electrode permits the direct stimulation of action potentials in neurons surrounding the electrode.

mc_card_small
The PCI data acquisition card from Multichannel systems.

Example of a burst of activity recorded using a Multichannel systems MEA (200 um spacing) and our Meabench OSX software. Each window is 200 milliseconds in duration, voltage scale is 75 uV per window (channel).
burst_snapshot_200ms


An example of two action potentials recording in my laboratory.
pictureofspike


Multichannel systems hardware and software are used in a wide variety of applications. Below is a list of publications listing some of these areas.

Publication list from MultiChannel Systems Website:

Cardiophysiology
• K. Banach, M. D. Halbach, P. Hu, J. Hescheler, U. Egert, 
Development of electrical activity in cardiac myocyte aggregates derived from mouse embryonic stem cells, 
Am J Physiol Heart Circ Physiol 284, H2114-23 (Jun, 2003).
• S. L. Beeres et al.,
Human adult bone marrow mesenchymal stem cells repair experimental conduction block in rat cardiomyocyte cultures, 
J.Am.Coll.Cardiol. 46 (10):1943-1952, 2005.
• O. Caspi, L. Gepstein,
Potential applications of human embryonic stem cell-derived cardiomyocytes, 
Ann N Y Acad Sci 1015, 285-98 (May, 2004).
• K. Dolnikov , M. Shilkrut, N. Zeevi-Levin, A. Danon, S. Gerecht-Nir, J. Itskovitz-Eldor, O. Binah,
Functional properties of human embryonic stem cell-derived cardiomyocytes.
Ann N Y Acad Sci. 2005 Jun;1047:66-75.
• U. Egert U, T. Meyer,
Heart on a chip. 
In: Dhein S, Delmar M (eds) Methods in Cardiovascular Research. Springer Vlg., Stuttgart, 2004
• Y. Feld et al.,
Electrophysiological modulation of cardiomyocytic tissue by transfected fibroblasts expressing potassium channels: a novel strategy to manipulate excitability, 
Circulation 105, 522-9 (Jan 29, 2002).
• M. Halbach, U. Egert , J. Hescheler, K. Banach. 
Estimation of action potential changes from field potential recordings in multicellular mouse cardiac myocyte cultures.
Cell Physiol Biochem. 2003;13(5):271-84.
• J. Hescheler, Y. Duan , M. Tang, H. Linag, 
Investigation on spontaneous electrical activity of murine embryonic heart using microelectrode arrays
Acta Physiologica Sinica, February 25, 2006, 58 (1): 65-70
• J. Hescheler, B. K. Fleischmann,
Indispensable tools: embryonic stem cells yield insights into the human heart, 
J Clin Invest 108, 363-4 (Aug, 2001).
• J. Hescheler et al.,
Determination of electrical properties of ES cell-derived cardiomyocytes using MEAs, 
J Electrocardiol 37 Suppl, 110-6 (2004).
• J. Hescheler, M. Wartenberg, B. K. Fleischmann, K. Banach, H. Acker, and H. Sauer,
Embryonic stem cells as a model for the physiological analysis of the cardiovascular system,
Methods Mol.Biol. 185:169-187, 2002.
• I. Kehat et al.,
Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes, 
J Clin Invest 108, 407-14 (Aug, 2001).
• I. Kehat et al.,
Electromechanical integration of cardiomyocytes derived from human embryonic stem cells, 
Nat Biotechnol 22, 1282-9 (Oct, 2004).
• J. C. Legrand, P. Darbon, and J. Streit, 
Effects of brain-derived neurotrophic factor (BDNF) on activity mediated by NMDA receptors in rat spinal cord cultures, 
Neurosci.Lett. 390 (3):145-149, 2005.
• C.G. Liew et al., 
Human embryonic stem cells: possibilities for human cell transplantation,
Ann Med. 2005;37(7):521-32.
• E. Kolossov , Z. Lu , I. Drobinskaya, N. Gassanov , Y. Duan, H. Sauer, O. Manzke, W. Bloch, H. Bohlen, J. Hescheler, B.K. Fleischmann,
Identification and characterization of embryonic stem cell-derived pacemaker and atrial cardiomyocytes,
FASEB J. 2005 Jan 19.
• Z. J. Lu et al.,
Arrhythmia in isolated prenatal hearts after ablation of the Cav2.3 (alpha1E) subunit of voltage-gated Ca2+ channels, 
Cell Physiol Biochem 14, 11-22 (2004).
• G. Meiry et al.,
Evolution of action potential propagation and repolarization in cultured neonatal rat ventricular myocytes, 
J Cardiovasc Electrophysiol 12, 1269-77 (Nov, 2001).
• T. Meyer, K. H. Boven, E. Gunther, M. Fejtl,
Micro-electrode arrays in cardiac safety pharmacology: a novel tool to study QT interval prolongation, 
Drug Saf 27, 763-72 (2004).
• Th. Meyer, Ch. Leisgen, B. Gonser, E. Guenther, 
QT-Screen: High-throughput cardiac safety pharmacology by extracellular electrophysiology on primary cardiac myocytes, ADDT (2004)
• A. Natarajan, P. Molnar, K. Sieverdes, A. Jamshidi, J.J. Hickman,
icroelectrode array recordings of cardiac action potentials as a high throughput method to evaluate pesticide toxicity,
Toxicol In Vitro. 2005 Sep 28; [Epub ahead of print]
• F. Pillekamp et al.,
Establishment and characterization of a mouse embryonic heart slice preparation. 
Cell Physiol Biochem. 2005;16(1-3):127-32.
• M. Reppel et al.,
The electrocardiogram of human embryonic stem cell-derived cardiomyocytes,
J Electrocardiol. 2005;38 Suppl:166-70.
• M. Reppel et al.,
Microelectrode arrays: A new tool to measure embryonic heart activity, 
J Electrocardiol 37 Suppl, 104-9 (2004).
• M. Reppel, C. Boettinger, J. Hescheler,
Beta-adrenergic and muscarinic modulation of human embryonic stem cell-derived cardiomyocytes, 
Cell Physiol Biochem 14, 187-96 (2004).
• A. Rothermel et al.,
A functional cardiomyocyte-based biosensor for prediagnostic monitoring: an Angiotensin II study,
IFMBE, Medical & Biological Engineering & Computing 2004, IFMBE 6, ISSN: 1727-1983
• A. Rothermel et al.,
Cells on a chip--the use of electric properties for highly sensitive monitoring of blood-derived factors involved in angiotensin II type 1 receptor signalling,
Cell Physiol Biochem. 2005;16(1-3):51-8.
• J. Satin et al.,
Mechanism of spontaneous excitability in human embryonic stem cell derived cardiomyocytes, 
J Physiol 559, 479-96 (Sep 1, 2004).
• K. Schwanke et al., 
Generation and Characterization of Functional Cardiomyocytes from Rhesus Monkey Embryonic Stem Cells, 
Stem Cells. 2006 Mar 16
• A. Stett et al.,
Biological application of microelectrode arrays in drug discovery and basic research, 
Anal Bioanal Chem 377, 486-95 (Oct, 2003).
• T. Xue, H.C. Cho, F.G. Akar, S.Y.Tsang, S.P. Jones, E. Marban, G.F. Tomaselli , R.A. Li,
Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers,
Circulation. 2005 Jan 4;111(1):11-20.
• N. Zeevi-Levin , Y.D. Barac, Y. Reisner, I. Reiter, G. Yaniv, G. Meiry, Z. Abassi, S. Kostin, J. Schaper, M. R. Rosen, N. Resnick, O. Binah,
Gap junctional remodeling by hypoxia in cultured neonatal rat ventricular myocytes,
Cardiovasc Res. 2005 Apr 1;66(1):64-73.

Chronobiology
• D. Granados-Fuentes, M. T. Saxena, L. M. Prolo, S. J. Aton, E. D. Herzog,
Olfactory bulb neurons express functional, entrainable circadian rhythms, 
Eur J Neurosci 19, 898-906 (Feb, 2004).
• M. H. Hastings, E. D. Herzog,
Clock genes, oscillators, and cellular networks in the suprachiasmatic nuclei.
J Biol Rhythms. 2004 Oct;19(5):400-13.
• E. D. Herzog, R. M. Huckfeldt,
Circadian entrainment to temperature, but not light, in the isolated suprachiasmatic nucleus, 
J Neurophysiol 90, 763-70 (Aug, 2003).
• E. D. Herzog, S. J. Aton, R. Numano, Y. Sakaki, H. Tei,
Temporal precision in the mammalian circadian system: a reliable clock from less reliable neurons, 
J Biol Rhythms 19, 35-46 (Feb, 2004).
• E. D. Herzog, S. J. Aton, C. S. Colwell, A. J. Harmar, J. Waschek,
Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons,
Nat Neurosci. 2005 Mar 6.
• D. Ren, J.D. Miller, 
Primary cell culture of suprachiasmatic nucleus. 
Brain Res Bull. 2003 Sep 30;61(5):547-53. Review.
• E. Tousson, H. Meissl,
Suprachiasmatic nuclei grafts restore the circadian rhythm in the paraventricular nucleus of the hypothalamus, 
J Neurosci 24, 2983-8 (Mar 24, 2004).
• R. N. Van Gelder, E. D. Herzog, W. J. Schwartz, P. H. Taghert,
Circadian rhythms: in the loop at last, 
Science 300, 1534-5 (Jun 6, 2003).

Pharmacology, Drug effects
• S.Chawla, P. Vanhoutte,F. J. Arnold,C. L. Huang , H. Bading,
Neuronal activity-dependent nucleocytoplasmic shuttling of HDAC4 and HDAC5. 
J Neurochem. 2003 Apr;85(1):151-9.
• M.A. Corner , R.E. Baker, J. van Pelt, P.S.Wolters,
Compensatory physiological responses to chronic blockade of amino acid receptors during early development in spontaneously active organotypic cerebral cortex explants cultured in vitro. 
Prog Brain Res. 2005;147:231-48. Review.
• M.A. Corner, J. van Pelt, P.S. Wolters, R.E. Baker, R.H.Nuytinck,
Physiological effects of sustained blockade of excitatory synaptic transmission on spontaneously active developing neuronal networks-an inquiry into the reciprocal linkage between intrinsic biorhythms and neuroplasticity in early ontogeny. 
Neurosci Biobehav Rev. 2002 Mar;26(2):127-85. Review.
• P. Darbon, A. Tscherter, C. Yvon, J. Streit,
Role of the electrogenic Na/K pump in disinhibition-induced bursting in cultured spinal networks. 
J Neurophysiol. 2003 Nov;90(5):3119-29.
• P. Darbon, C. Yvon, J.C. Legrand, J. Streit, 
INaP underlies intrinsic spiking and rhythm generation in networks of cultured rat spinal cord neurons. 
Eur J Neurosci. 2004 Aug;20(4):976-88.
• D. Eytan, A. Minerbi, N. Ziv, S. Marom,
Dopamine-induced dispersion of correlations between action potentials in networks of cortical neurons,
J Neurophysiol. 2004 Sep;92(3):1817-24.
• P. Gortz et al.,
Implications for hyperhomocysteinemia: not homocysteine but its oxidized forms strongly inhibit neuronal network activity, 
J Neurol Sci 218, 109-14 (Mar 15, 2004).
• P. Gortz, W. Fleischer, C. Rosenbaum, F. Otto, M. Siebler,
Neuronal network properties of human teratocarcinoma cell line-derived neurons, 
Brain Res 1018, 18-25 (Aug 20, 2004).
• G. E. Hardingham, F. J. Arnold, H. Bading,
A calcium microdomain near NMDA receptors: on switch for ERK-dependent synapse-to-nucleus communication, 
Nat Neurosci 4, 565-6 (Jun, 2001).
• G. E. Hardingham, F. J. Arnold, H. Bading,
Nuclear calcium signaling controls CREB-mediated gene expression triggered by synaptic activity, 
Nat Neurosci 4, 261-7 (Mar, 2001).
• G. E. Hardingham, Y. Fukunaga, H. Bading,
Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways, 
Nat Neurosci 5, 405-14 (May, 2002).
• G. E. Hardingham, F.X. Soriano, S. Papadia, F. Hofmann, N.R. Hardingham, H. Bading ,
Preconditioning doses of NMDA promote neuroprotection by enhancing neuronal excitability,
J Neurosci. 2006 Apr 26;26(17):4509-18.
• F. Hofmann et al.,
Functional re-establishment of the perforant pathway in organotypic co-cultures on microelectrode arrays, 
Brain Res 1017, 184-96 (Aug 13, 2004).
• J. Itskovitz-Eldor, S. Gerecht-Nir,
Human embryonic stem cells: a potential source for cellular therapy,
Am J Transplant. 2004;4 Suppl 6:51-7.
• A. Klusmann, W. Fleischer, A. Waldhaus, M. Siebler, E. Mayatepek,
Influence of D-arabitol and ribitol on neuronal network activity,
J Inherit Metab Dis. 2005;28(6):1181-3.
• J. C. Legrand, P. Darbon, J. Streit,
Contributions of NMDA receptors to network recruitment and rhythm generation in spinal cord cultures. 
Eur J Neurosci. 2004 Feb;19(3):521-32.
• J. C. Legrand, P. Darbon, and J. Streit, 
Effects of brain-derived neurotrophic factor (BDNF) on activity mediated by NMDA receptors in rat spinal cord cultures, 
Neurosci.Lett. 390 (3):145-149, 2005.
• S. Martinoia, L. Bonzano, M. Chiappalone, M. Tedesco, M. Marcoli, G. Maura,
In vitro cortical neuronal networks as a new high-sensitive system for biosensing applications, 
Biosens Bioelectron. 2005 Apr 15;20(10):2071-2078.
• F. Otto, P. Gortz, W. Fleischer, M. Siebler,
Cryopreserved rat cortical cells develop functional neuronal networks on microelectrode arrays, 
J Neurosci Methods 128, 173-81 (Sep 30, 2003).
• A. M. Ray et al.,
Capsazepine protects against neuronal injury caused by oxygen glucose deprivation by inhibiting I(h), 
J Neurosci 23, 10146-53 (Nov 5, 2003).
• R. Segev, Y. Shapira, M. Benveniste, E. Ben-Jacob,
Observations and modeling of synchronized bursting in two-dimensional neural networks, 
Phys Rev E Stat Nonlin Soft Matter Phys 64, 011920 (Jul, 2001).
• M. Siebler, F. Otto, B.C. Kieseier, P. Gortz, H.P. Hartung,
The pentapeptide QYNAD does not inhibit neuronal network activity,
Can J Neurol Sci. 2005 Aug;32(3):344-8.
• J. Streit, A. Tscherter, M. O. Heuschkel, P. Renaud,
The generation of rhythmic activity in dissociated cultures of rat spinal cord, 
Eur J Neurosci 14, 191-202 (Jul, 2001).
• A. Tscherter, M. O. Heuschkel, P. Renaud, J. Streit,
Spatiotemporal characterization of rhythmic activity in rat spinal cord slice cultures, 
Eur J Neurosci 14, 179-90 (Jul, 2001).
• M. Y. Xiao, P. Wasling, E. Hanse, B. Gustafsson,
Creation of AMPA-silent synapses in the neonatal hippocampus, 
Nat Neurosci 7, 236-43 (Mar, 2004).

Drug screening and safety pharmacology
• O. Caspi, L. Gepstein,
Potential applications of human embryonic stem cell-derived cardiomyocytes, 
Ann N Y Acad Sci 1015, 285-98 (May, 2004).
• Z. J. Lu et al.,
Arrhythmia in isolated prenatal hearts after ablation of the Cav2.3 (alpha1E) subunit of voltage-gated Ca2+ channels, 
Cell Physiol Biochem 14, 11-22 (2004).
• Th. Meyer, Ch. Leisgen, B. Gonser, E. Guenther, 
QT-Screen: High-throughput cardiac safety pharmacology by extracellular electrophysiology on primary cardiac myocytes, ADDT (2004)
• T. Meyer, K. H. Boven, E. Guenther, M. Fejtl,
Micro-electrode arrays in cardiac safety pharmacology: a novel tool to study QT interval prolongation, 
Drug Saf 27, 763-72 (2004).
• M. Reppel et al.,
Microelectrode arrays: A new tool to measure embryonic heart activity, 
J Electrocardiol 37 Suppl, 104-9 (2004).
• A. Stett et al.,
Biological application of microelectrode arrays in drug discovery and basic research, 
Anal Bioanal Chem 377, 486-95 (Oct, 2003).

Drug screening and ion channel screening
• J. Comley 
Automated Patch Clamping- Setting a new standard for early hERG,
Drug Discovery World, 2005/6
• A.L. Goldin,
Expression of Ion Channels in Xenopus Oocytes,
in Expression and Analysis of Recombinant Ion Channels,
ED J. Clare and D.J. Trezise, Weinheim, 2006, ISBN: 3-527-31209-9
• E. Guenther, U. Pehl, C. Leisgen, K. Gampe,
Automated higher-throughput compound screening on ion channels based on the xenopus laevis oocyte expression system
Assay Drug Dev Technol 2004, 2(5)
• K. Schnizler et al.;
A novel chloride channel in Drosophila melanogaster is inhibited by protons,
J Biol Chem. 2005 Apr 22;280(16):16254-62. Epub 2005 Feb 15.
• Schnizler K, Kuester M, Methfessel C, Fejtl M. 
The roboocyte: automated cDNA/mRNA injection and subsequent TEVC recording on Xenopus oocytes in 96-well microtiter plates. 
Receptors Channels. 2003;9(1):41-8.
• J.S. Wiley et al.,
A Thr357 to Ser polymorphism in homozygous and compound heterozygous subjects causes absent or reduced P2X7 function and impairs ATP-induced mycobacterial killing by macrophages,
J Biol Chem. 2006 Jan 27;281(4):2079-86. Epub 2005 Nov 1.

In vivo studies
• T.J. Blanche, M.A. Spacek,J.F. Hetke, N.V. Swindale,
Polytrodes: High Density Silicon Electrode Arrays for Large Scale Multiunit Recording,
J Neurophysiol. 2004 Nov 17; [Epub ahead of print]
• T.J. Blanche, N.V. Swindale,
Nyquist interpolation improves neuron yield in multiunit recordings,
J Neurosci Methods. 2006 Jul 15;155(1):81-91. Epub 2006 Feb 14.
• S. Butovas, C. Schwarz,
Spatiotemporal effects of microstimulation in rat neocortex: a parametric study using multielectrode recordings, 
J Neurophysiol 90, 3024-39 (Nov, 2003).
• F. Haiss, C. Schwarz,
Spatial segregation of different modes of movement control in the whisker representation of rat primary motor cortex, 
J Neurosci. 2005 Feb 9;25(6):1579-87.
• J.F. Lèger, E.A. Stern, A. Aertsen, D. Heck,
Synaptic integration in rat frontal cortex shaped by network activity. 
J Neurophysiol. 2005 Jan;93(1):281-93. Epub 2004 Aug 11.
• E. J. Lang,
GABAergic and glutamatergic modulation of spontaneous and motor-cortex-evoked complex spike activity, 
J Neurophysiol 87, 1993-2008 (Apr, 2002).
• E.J. Lang. S.P. Marshall,
Inferior olive oscillations gate transmission of motor cortical activity to the cerebellum,
J Neurosci. 2004 Dec 15;24(50):11356-67.
• E.J. Lang, T.A. Blenkinsop,
Block of inferior olive gap junctional coupling decreases Purkinje cell complex spike synchrony and rhythmicity,
J Neurosci. 2006 Feb 8;26(6):1739-48.
• J.E. Mikkonen, M. Penttonen,
Frequency bands and spatiotemporal dynamics of beta burst stimulation induced afterdischarges in hippocampus in vivo.
Neuroscience. 2005;130(1):239-47.
• C. Schwarz, H. Hentschke, B. Antkowiak,
Neocortex is the major target of sedative concentrations of volatile anaesthetics: strong depression of firing rates and increase of GABA receptor-mediated inhibition,
Eur J Neurosci. 2005 Jan;21(1):93-102.

Neural regeneration
• F. Hofmann et al.,
Functional re-establishment of the perforant pathway in organotypic co-cultures on microelectrode arrays, 
Brain Res 1017, 184-96 (Aug 13, 2004).
Synaptic Plasticity
• F. Arnold, F. Hofmann, P. Bengtson, M. Wittmann, P. Vanhoutte, H. Bading, 
Microelectrode array recordings of cultured hippocampal networks reveal a
simple model for transcription and protein synthesis-dependent plasticity.
J Physiol 564 (2005) 3-19.
• F. Lante, M. C. de Jesus Ferreira, J. Guiramand, M. Recasens, and M. Vignes, 
Low-frequency stimulation induces a new form of LTP, metabotropic glutamate (mGlu(5)) receptor- and PKA-dependent, in the CA1 area of the rat hippocampus, 
Hippocampus, 2005.
Visual perception
• M. J. Berry, J. L. Puchalla, E. Schneidman, R. A. Harris,
Redundancy in the Population Code of the Retina
Neuron, Vol 46, 493-504, May 2005
• A. H. Chen, Y. Zhou, H. Q. Gong, P. J. Liang,
Luminance adaptation increased the contrast sensitivity of retinal ganglion cells. 
Neuroreport. 2005 Mar 15;16(4):371-5.
• A.Chen, Y. Zhou, H. Gong, P. Liang, 
Chicken retinal ganglion cells response characteristics: multi-channel electrode recording study, 
Sci China (2003)
• A. H. Chen, Y. Zhou, H. Q. Gong, P. J. Liang,
Firing rates and dynamic correlated activities of ganglion cells both contribute to retinal information processing, 
Brain Res 1017, 13-20 (Aug 13, 2004).
• J. Demas, S. J. Eglen, R. O. Wong,
Developmental loss of synchronous spontaneous activity in the mouse retina is independent of visual experience, 
J Neurosci 23, 2851-60 (Apr 1, 2003).
• J. Demas et al., 
Failure to maintain eye-specific segregation in nob, a mutant with abnormally patterned retinal activity, 
Neuron. 2006 Apr 20;50(2):247-59.
• F. Gekeler et al.,
Subretinal electrical stimulation of the rabbit retina with acutely implanted electrode arrays, 
Graefes Arch Clin Exp Ophthalmol 242, 587-96 (Jul, 2004).
• P. M. Horton, L. Bonny, A. U. Nicol, K. M. Kendrick, J.F. Feng,
Applications of multi-variate analysis of variance (MANOVA) to multi-electrode array electrophysiology data.
J Neurosci Methods. 2005 Jul 15;146(1):22-41.
• A. D. Huberman, K. D. Murray, D. K. Warland, D. A. Feldheim, B. Chapman,
Ephrin-As mediate targeting of eye-specific projections to the lateral geniculate nucleus,
Nat Neurosci. 2005 Aug;8(8):1013-21. Epub 2005 Jul 17.
• P.J. Liang, Y. Zhou, A.H. Chen, H.Q. Gong,
Color information encoded by the spatiotemporal patterns of light response in ganglion cells of chick retina,
Brain Res. 2005 Oct 12;1059(1):1-6. Epub 2005 Sep 23.
• P.J. Liang, X. Jin, A.H. Chen, H.Q. Gong,
Information transmission rate changes of retinal ganglion cells during contrast adaptation, 
Brain Res. 2005 Sep 7;1055(1-2):156-64.
• Z.H. Pan, A. Bi, J. Cui, Y.P. Ma, E. Olshevskaya, M. Pu, A.M. Dizhoor,
Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration,
Neuron. 2006 Apr 6;50(1):23-33.
• M.S. Perin et al.,
Neuronal pentraxins mediate synaptic refinement in the developing visual system,
J Neurosci. 2006 Jun 7;26(23):6269-81.
• C. Pfeiffenberger, T. Cutforth, G. Woods, J. Yamada , R. C. Renteria, D. R. Copenhagen, J. G. Flanagan, D. A.Feldheim,
Ephrin-As and neural activity are required for eye-specific patterning during retinogeniculate mapping,
Nat Neurosci. 2005 Aug;8(8):1022-7. Epub 2005 Jul 17.
• R. J. Sadleir et al., 
Study of MRI/MEA compatibility at 17.6 Tesla 
IJBEM Vol. 7, No. 1, 2005
• R. Segev, J. Goodhouse, J. Puchalla, M. J. Berry, 2nd,
Recording spikes from a large fraction of the ganglion cells in a retinal patch, 
Nat Neurosci 7, 1154-61 (Oct, 2004).
• R. Segev, M.J. Berry, E. Schneidman, W. Bialek
Weak pairwise correlations imply strongly correlated network states in a neural population,
Nature 440, 1007-1012 (20 Apr 2006) Article
• A. Stett, W. Barth, S. Weiss, H. Haemmerle, E. Zrenner,
Electrical multisite stimulation of the isolated chicken retina, 
Vision Res 40, 1785-95 (2000).
• M.P. Stryker, J. Cang, R.C. Renteria, M. Kaneko, X. Liu, D.R. Copenhagen,
Development of precise maps in visual cortex requires patterned spontaneousactivity in the retina,
Neuron. 2005 Dec 8;48(5):797-809.
• M. M. Syed, S. Lee, S.He, Z.J. Zhou, 
Spontaneous waves in the ventricular zone of developing mammalian retina. 
J Neurophysiol. 2004 May;91(5):1999-2009.
• N. Tian, D. R. Copenhagen,
Visual deprivation alters development of synaptic function in inner retina after eye opening, 
Neuron 32, 439-49 (Nov 8, 2001).
• N. Tian, D. R. Copenhagen,
Visual stimulation is required for refinement of ON and OFF pathways in postnatal retina, 
Neuron 39, 85-96 (Jul 3, 2003).
• D.C. Tu, D. Zhang, J. Demas, E.B. Slutsky, I. Provencio, T.E. Holy , R.N. Van Gelder,
Physiologic diversity and development of intrinsically photosensitive retinal ganglion cells,
Neuron. 2005 Dec 22;48(6):987-99.
• D.K. Warland, A.D. Huberman, L.M. Chalupa,
Dynamics of spontaneous activity in the fetal macaque retina during development of retinogeniculate pathways,
J Neurosci. 2006 May 10;26(19):5190-7.
• S. D. Wilke et al.,
Population coding of motion patterns in the early visual system,
J Comp Physiol [A]. 2001 Sep;187(7):549-58.
• M. Wilms and R. Eckhorn, 
Spatiotemporal receptive field properties of epiretinally recorded spikes and local electroretinograms in cats,
BMC.Neurosci. 6:50, 2005.
• R.O. Wong, R.C. Stacy, J. Demas, R.W. Burgess, J.R. Sanes ,
Disruption and recovery of patterned retinal activity in the absence of acetylcholine,
J Neurosci. 2005 Oct 12;25(41):9347-57.
• G. M. Zeck, Q. Xiao, R. H. Masland,
The spatial filtering properties of local edge detectors and brisk-sustained retinal ganglion cells,
Eur J Neurosci. 2005 Oct;22(8):2016-26.
• P. M. Zhang, J. Y. Wu, Y. Zhou, P. J. Liang, J. Q. Yuan,
Spike sorting based on automatic template reconstruction with a partial solution to the overlapping problem, 
J Neurosci Methods 135, 55-65 (May 30, 2004).
• E. Zrenner et al.,
The development of subretinal microphotodiodes for replacement of degenerated photoreceptors, 
Ophthalmic Res 29, 269-80 (1997).
• E. Zrenner et al.,
Can subretinal microphotodiodes successfully replace degenerated photoreceptors?, 
Vision Res 39, 2555-67 (Jul, 1999).

Methods generally
• U. Egert, H. Haemmerle, 
Application of the microelectrode-array (MEA) technology in pharmaceutical drug research, 
Goettingen Neurobiology Meeting (2001)
• U. Egert et al.,
MEA-Tools: an open source toolbox for the analysis of multi-electrode data with MATLAB, 
J Neurosci Methods 117, 33-42 (May 30, 2002).
• U. Egert et al.,
Perforated Microelectrode Arrays Optimize Oxygen Availability and Signal-to-Noise Ratio in Brain Slice Recordings,
Mikrosystemtechnologie Kongress Freiburg, 2005
• M. O. Heuschkel, M. Fejtl, M. Raggenbass, D. Bertrand, P. Renaud,
A three-dimensional multi-electrode array for multi-site stimulation and recording in acute brain slices, 
J Neurosci Methods 114, 135-48 (Mar 15, 2002).
• S.A. Makohliso, M. Heuschkel,
Multi-electrode Array Biochips for Electrophysiology, 
Ayandybiosys (2003)
• T. Meyer, K. H. Boven, E. Guenther, M. Fejtl,
Micro-electrode arrays in cardiac safety pharmacology: a novel tool to study QT interval prolongation, 
Drug Saf 27, 763-72 (2004).
• Th. Meyer, Ch. Leisgen, B. Gonser, E. Guenther, 
QT-Screen: High-throughput cardiac safety pharmacology by extracellular electrophysiology on primary cardiac myocytes, ADDT (2004)
• M. Reppel et al.,
Microelectrode arrays: A new tool to measure embryonic heart activity, 
J Electrocardiol 37 Suppl, 104-9 (2004).
• W.Singer, 
Why use more than one electrode at a time, 
TINS (2000)
• A. Stett et al.,
Biological application of microelectrode arrays in drug discovery and basic research, 
Anal Bioanal Chem 377, 486-95 (Oct, 2003).
• C. Ziegler,
Cell-based biosensors, 
Fresenius J Anal Chem 366, 552-9 (Mar-Apr, 2000).
Methods stimulation
• B.D. Burrell, B.L. Moss, A.D. Fuller, C.L. Sahley,
Serotonin modulates axo-axonal coupling between neurons critical for learning in the leech, 
J Neurophysiol. 2005 Jun 29; [Epub ahead of print]
• S.M. Potter, D.A. Wagenaar, T.B. DeMarse,
Closing the loop: Stimulation feedback systems for embodied MEA cutlures,
in: Advances in Network Electrophysiology Using Multi-Electrode Arrays, M. Taketani, M. Baudry (Eds.), Springer 2005
• Y. Jimbo, N. Kasai, K. Torimitsu, T. Tateno, H. P. Robinson,
A system for MEA-based multisite stimulation, 
IEEE Trans Biomed Eng 50, 241-8 (Feb, 2003).
• J. Stern-Straeter, A.D. Bach, L. Stangenberg, V.T. Foerster, R.E. Horch, G.B.Stark, J.P. Beier, 
Impact of electrical stimulation on three-dimensional myoblast cultures - a real-time RT-PCR study,
J Cell Mol Med. 2005 Oct-Dec;9(4):883-92.
• A. Stett, W. Barth, S. Weiss, H. Haemmerle, E. Zrenner,
Electrical multisite stimulation of the isolated chicken retina, 
Vision Res 40, 1785-95 (2000).
• D. A. Wagenaar, S. M. Potter,
Real-time multi-channel stimulus artifact suppression by local curve fitting, 
J Neurosci Methods 120, 113-20 (Oct 30, 2002).
• D. A. Wagenaar, J. Pine, S. M. Potter,
Effective parameters for stimulation of dissociated cultures using multi-electrode arrays, 
J Neurosci Methods 138, 27-37 (Sep 30, 2004).
• D.A. Wagenaar, S.M. Potter, 
A versatile all-channel stimulator for electrode arrays, with real-time control, 
J Neur Eng 1, 39-45 (2004)
• D.A. Wagenaar, R. Madhavan, J. Pine, S.M. Potter,
Controlling bursting in cortical cultures with closed-loop multi-electrode stimulation,
J Neurosci. 2005 Jan 19;25(3):680-8.
• C. Wirth, H. R. Luscher,
Spatiotemporal evolution of excitation and inhibition in the rat barrel cortex investigated with multielectrode arrays, 
J Neurophysiol 91, 1635-47 (Apr, 2004).
• A. van Bergen, T. Papanikolaou, A. Schuker, A. Moller, B. Schlosshauer,
Long-term stimulation of mouse hippocampal slice culture on microelectrode array, 
Brain Res Brain Res Protoc 11, 123-33 (May, 2003).
Methods spike sorting
• E. Hulata, R. Segev, Y. Shapira, M. Benveniste, E. Ben-Jacob,
Detection and sorting of neural spikes using wavelet packets, 
Phys Rev Lett 85, 4637-40 (Nov 20, 2000).
• P. M. Zhang, J. Y. Wu, Y. Zhou, P. J. Liang, J. Q. Yuan,
Spike sorting based on automatic template reconstruction with a partial solution to the overlapping problem, 
J Neurosci Methods 135, 55-65 (May 30, 2004).
Technology and development
• D. J. Bakkum, A. C. Shkolnik, G. Ben-Ary, P. Gamblen, T. B. DeMarse and S. M. Potter,
Removing some ‘A’ from AI: Embodied Cultured Networks
Embodied Artificial Intelligence (2004) Springer-Verlag
• V. Bucher, M.Schubert, D. Kern, W. Nisch, 
Light-addressed sub-µm electrodes for extracellular recording and stimulation of excitable cells, 
Microel Eng 57-58, 705-712 (2001)
• T. DeMarse, D.A. Wagenaar, A.W. Blau, S. M. Potter, 
The neurally controlled animat: Biological brains acting with simulated bodies, 
Autonom Robots 11, 305-310 (2001)
• S. DeWeerth, J. Ross, G. Prado, Y. Choi, M.Allen, M. LaPlaca
A novel system for measurement of electrophysiological signals associated with traumatic neuronal injury
microTAS, Oct, 2003
• U. Egert et al.,
MEA-Tools: an open source toolbox for the analysis of multi-electrode data with MATLAB, 
J Neurosci Methods 117, 33-42 (May 30, 2002).
• F. Gekeler et al.,
Subretinal electrical stimulation of the rabbit retina with acutely implanted electrode arrays, 
Graefes Arch Clin Exp Ophthalmol 242, 587-96 (Jul, 2004).
• G. Gholmieh et al.,
A biosensor for detecting changes in cognitive processing based on nonlinear systems analysis, 
Biosens Bioelectron 16, 491-501 (Sep, 2001).
• G. Gholmieh, S. Courellis, A. Dimoka, J. D. Wills, J. LaCoss, J. J. Granacki, V. Marmarelis, T. Berger,
An algorithm for real-time extraction of population EPSP and population spike amplitudes from hippocampal field potential recordings.
J Neurosci Methods. 2004 Jul 30;136(2):111-21.
• G. Gholmieh et al.,
Custom-designed high-density conformal planar multielectrode arrays for brain slice electrophysiology,
J Neurosci Methods. 2006 Apr 15;152(1-2):116-29. Epub 2005 Nov 9.
• F. Heer et al.,
CMOS microelectrode array for the monitoring of electrogenic cells, 
Biosens Bioelectron 20, 358-66 (Sep 15, 2004).
• M. O. Heuschkel, M. Fejtl, M. Raggenbass, D. Bertrand, P. Renaud,
A three-dimensional multi-electrode array for multi-site stimulation and recording in acute brain slices,
J Neurosci Methods 114, 135-48 (Mar 15, 2002).
• Y. Jimbo, N. Kasai, K. Torimitsu, T. Tateno, H. P. Robinson,
A system for MEA-based multisite stimulation, 
IEEE Trans Biomed Eng 50, 241-8 (Feb, 2003).
• S.A. Makohliso, M. Heuschkel, 
Multi-electrode Array Biochips for Electrophysiology, 
Ayandybiosys (2003)
• S. Martinoia , V. Sanguineti, L. Cozzi, L. Berdondini, J. van Pelt, J. Tomas, G. Le Masson, F. Davide 
Towards an embodied in vitro electrophysiology: the NeuroBIT project. 
Neurocomputing 58–60 (2004) 1065 – 1072
• Y. Nam, J. C. Chang, B. C. Wheeler, G. J. Brewer,
Gold-coated microelectrode array with thiol linked self-assembled monolayers for engineering neuronal cultures, 
IEEE Trans Biomed Eng 51, 158-65 (Jan, 2004).
• S.M. Potter, N. Lukina, K.J. Longmuir. Y. Wu,
Multi-Site two-photon imaging of neurons on multi-electrode arrays, 
Proc SPIE 4262 (2001)
• S.M. Potter, D.A. Wagenaar, R. Madhavan, T.B. DeMarse,
Long-term bidirectional neuron interfaces for robotic control, and in vitro learning studies,
Proceedings of the IEEE-EMBS, 2003
• M. Stelzle et al.,
On the chemical modification of pacemaker electrodes and patterned surface functionalization of planar substrates,
Biosens Bioelectron 12, 853-65 (1997).
• A. Stett, 
New-generation MEA technology: improving the interface to physiological function, 
SIMEA, Reutlingen (2003)
• V. Torre, M.E. Ruaro, P. Bonifazi,
Toward the neurocomputer: image processing and pattern recognition with neuronal cultures,
IEEE Trans Biomed Eng. 2005 Mar;52(3):371-83.
• A. Vato , L. Bonzano, M. Chiappalone, S. Cicero, F. Morabito, A. Novellinoa, G. Stillo,
Spike manager: a new tool for spontaneous and evoked neuronal networks activity characterization,
Neurocomputing 58–60 (2004) 1153 – 1161
• D.A. Wagenaar, S.M. Potter, 
A versatile all-channel stimulator for electrode arrays, with real-time control, 
J Neur Eng 1, 39-45 (2004)
• E. Zrenner et al.,
The development of subretinal microphotodiodes for replacement of degenerated photoreceptors, 
Ophthalmic Res 29, 269-80 (1997).
• E. Zrenner et al.,
Can subretinal microphotodiodes successfully replace degenerated photoreceptors?, 
Vision Res 39, 2555-67 (Jul, 1999).

Physiology and basic research
• Baruchi, E. Ben-Jacob,
Functional holography of recorded neuronal networks activity, 
Neuroinformatics 2, 333-52 (2004).
• J. M. Beggs, D. Plenz,
Neuronal avalanches in neocortical circuits, 
J Neurosci 23, 11167-77 (Dec 3, 2003).
• J. M. Beggs, D. Plenz,
Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures, 
J Neurosci 24, 5216-29 (Jun 2, 2004).
• B.D. Burrell, B.L. Moss, A.D. Fuller, C.L. Sahley,
Serotonin modulates axo-axonal coupling between neurons critical for learning in the leech, 
J Neurophysiol. 2005 Jun 29; [Epub ahead of print]
• Z.C. Chao, D.J. Bakkum, D.A. Wagenaar, S.M. Potter
Effects of random external background stimulation on network synaptic stability after tetanization
Neuroinformatics. 2005;3(3):263-80.
• M. Chiappalone, A. Novellino, I. Vajda, A. Vato, S. Martinoia, J. van Pelt,
Burst detection algorithms for the analysis of spatio-temporal patterns in cortical networks of neurons
Neurocomputing 65–66 (2005) 653–662
• M.A. Corner, J. van Pelt, P.S. Wolters, R.E. Baker, R.H.Nuytinck,
Physiological effects of sustained blockade of excitatory synaptic transmission on spontaneously active developing neuronal networks-an inquiry into the reciprocal linkage between intrinsic biorhythms and neuroplasticity in early ontogeny. 
Neurosci Biobehav Rev. 2002 Mar;26(2):127-85. Review.
• U. Egert et al.,
A novel organotypic long-term culture of the rat hippocampus on substrate-integrated multielectrode arrays, 
Brain Res Brain Res Protoc 2, 229-42 (Jun, 1998).
• U. Egert, D. Heck, A. Aertsen,
Two-dimensional monitoring of spiking networks in acute brain slices, 
Exp Brain Res 142, 268-74 (Jan, 2002).
• D. Eytan, N. Brenner, S. Marom,
Selective adaptation in networks of cortical neurons, 
J Neurosci 23, 9349-56 (Oct 15, 2003).
• P. Gortz, W. Fleischer, C. Rosenbaum, F. Otto, M. Siebler,
Neuronal network properties of human teratocarcinoma cell line-derived neurons, 
Brain Res 1018, 18-25 (Aug 20, 2004).
• E. D. Herzog, S. J. Aton, R. Numano, Y. Sakaki, H. Tei,
Temporal precision in the mammalian circadian system: a reliable clock from less reliable neurons, 
J Biol Rhythms 19, 35-46 (Feb, 2004).
• F. Hofmann et al.,
Functional re-establishment of the perforant pathway in organotypic co-cultures on microelectrode arrays, 
Brain Res 1017, 184-96 (Aug 13, 2004).
• F. Hofmann, H. Bading,
Long term recordings with microelectrode arrays: studies of transcription-dependent neuronal plasticity and axonal regeneration,
J Physiol Paris. 2006 Mar-May;99(2-3):125-32. Epub 2006 Jan 26.
• E. Hulata, I. Baruchi, R. Segev, Y. Shapira, E. Ben-Jacob,
Self-regulated complexity in cultured neuronal networks, 
Phys Rev Lett 92, 198105 (May 14, 2004).
• S. Marom, G. Shahaf,
Development, learning and memory in large random networks of cortical neurons: lessons beyond anatomy, 
Q Rev Biophys 35, 63-87 (Feb, 2002).
• F. Otto, P. Gortz, W. Fleischer, M. Siebler,
Cryopreserved rat cortical cells develop functional neuronal networks on microelectrode arrays, 
J Neurosci Methods 128, 173-81 (Sep 30, 2003).
• S. M. Potter, T. B. DeMarse,
A new approach to neural cell culture for long-term studies, 
J Neurosci Methods 110, 17-24 (Sep 30, 2001).
• S. M. Potter,
Distributed processing in cultured neuronal networks, 
Prog Brain Res 130, 49-62 (2001).
• G. R. Prado, J. D. Ross, S. P. Deweerth, and M. C. Laplaca,
Mechanical trauma induces immediate changes in neuronal network activity,
J.Neural Eng 2 (4):148-158, 2005.
• R. Segev, Y. Shapira, M. Benveniste, E. Ben-Jacob,
Observations and modeling of synchronized bursting in two-dimensional neural networks, 
Phys Rev E Stat Nonlin Soft Matter Phys 64, 011920 (Jul, 2001).
• R. Segev et al.,
Long term behavior of lithographically prepared in vitro neuronal networks, 
Phys Rev Lett 88, 118102 (Mar 18, 2002).
• R. Segev, M. Benveniste, Y. Shapira, E. Ben-Jacob,
Formation of electrically active clusterized neural networks, 
Phys Rev Lett 90, 168101 (Apr 25, 2003).
• R. Segev, I. Baruchi, E. Hulata, E. Ben-Jacob,
Hidden neuronal correlations in cultured networks, 
Phys Rev Lett 92, 118102 (Mar 19, 2004).
• G. Shahaf, S. Marom,
Learning in networks of cortical neurons, 
J Neurosci 21, 8782-8 (Nov 15, 2001).
• A. Stett et al.,
Biological application of microelectrode arrays in drug discovery and basic research, 
Anal Bioanal Chem 377, 486-95 (Oct, 2003).
• J. Streit, A. Tscherter, M. O. Heuschkel, P. Renaud,
The generation of rhythmic activity in dissociated cultures of rat spinal cord, 
Eur J Neurosci 14, 191-202 (Jul, 2001).
• V. Torre, P. Bonifazi, M.E. Ruaro,
Statistical properties of information processing in neuronal networks,
Eur J Neurosci. 2005 Dec;22(11):2953-64.
• A. Tscherter, M. O. Heuschkel, P. Renaud, J. Streit,
Spatiotemporal characterization of rhythmic activity in rat spinal cord slice cultures, 
Eur J Neurosci 14, 179-90 (Jul, 2001).
• R. N. Van Gelder, E. D. Herzog, W. J. Schwartz, P. H. Taghert,
Circadian rhythms: in the loop at last, 
Science 300, 1534-5 (Jun 6, 2003).
• J van Pelt , I Vajda , P.S. Wolters , M.A. Corner , G.J. Ramakers,
Dynamics and plasticity in developing neuronal networks in vitro. 
Prog Brain Res. 2004;147:171-88.
• J. van Pelt, M.A. Corner, P.S. Wolters, W.L. Rutten, G.J. Ramakers,
Longterm stability and developmental changes in spontaneous network burst firing patterns in dissociated rat cerebral cortex cell cultures on multielectrode arrays.
Neurosci Lett. 2004 May 6;361(1-3):86-9.
• J. van Pelt, P.S. Wolters, M.A. Corner,W.L. Rutten,G.J. Ramakers,
Long-term characterization of firing dynamics of spontaneous bursts in cultured neural networks.
IEEE Trans Biomed Eng. 2004 Nov;51(11):2051-62.
• J. van Pelt, I. Vajda, P.S. Wolters, M.A. Corner, G.J. Ramakers,
Dynamics and plasticity in developing neuronal networks in vitro,
Prog Brain Res. 2005;147:173-88.
• D.A. Wagenaar, R. Madhavan, J. Pine, S.M. Potter,
Controlling bursting in cortical cultures with closed-loop multi-electrode stimulation,
J Neurosci. 2005 Jan 19;25(3):680-8.
• D.A. Wagenaar, J. Pine, S.M. Potter,
An extremely rich repertoire of bursting patterns during the development of cortical cultures,
BMC Neurosci. 2006 Feb 7;7(1):11
• S. Wenisch, K. Trinkaus, A. Hild, D. Hose, C. Heiss, V. Alt, C. Klisch, H. Meissl, R. Schnettler,
Immunochemical, ultrastructural and electrophysiological investigations of bone-derived stem cells in the course of neuronal differentiation,
Bone. 2006 Jan 14;
• M. Y. Xiao, P. Wasling, E. Hanse, B. Gustafsson,
Creation of AMPA-silent synapses in the neonatal hippocampus, 
Nat Neurosci 7, 236-43 (Mar, 2004).
• B. Yvert, P. Branchereau, P. Meyrand,
Multiple spontaneous rhythmic activity patterns generated by the embryonic mouse spinal cord occur within a specific developmental time window,
J Neurophysiol. 2004 May;91(5):2101-9. Epub 2004 Jan 14.
• C. Yvon , R. Rubli, J. Streit,
Patterns of spontaneous activity in unstructured and minimally structured spinal networks in culture,
Exp Brain Res. 2005 Jun 7